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Abstract. A generalization of the local density approximation (LDA) method for systems
with strong Coulomb correlations is described which gives a correct description of the Mott
insulators. The LDA+ U method takes into account orbital dependence of the Coulomb and
exchange interactions which is absent in the LDA. The scheme can be regarded as a ‘first-
principles’ method because there are no adjustable parameters. When applied to the transition
metal and rare-earth metal compounds, the LDA+ U method gives a qualitative improvement
compared with the LDA not only for excited-state properties such as energy gaps but also for
ground-state properties such as magnetic moments and interatomic exchange parameters. The
orbital-dependent rotationally invariant LDA+ U potential gives a correct orbital polarization
and a corresponding Jahn–Teller distortion as well as polaron formation.

1. Introduction

There are two ways to study the ground-state properties and excitation spectrum of a many-
electron system. The first one is to choose some model with one or more adjustable
parameters, to calculate with this model some measurable property, for example the
spectrum, and to fit the result to the experimental data to determine the parameters of
the model. The second one is to find eigenfunctions and eigenvalues of the Hamiltonian in
a parameter-free approximation (the first-principles approach). Naturally, the first-principles
approach is more appealing, since it has no adjustable parameters. Unfortunately, except
for for small molecules, it is impossible to solve the many-electron problem without severe
approximations. The most successful first-principles method is the density functional theory
(DFT) within the local (spin-) density approximation (L(S)DA) [1], where the many-body
problem is mapped into a non-interacting system with a one-electron exchange–correlation
potential which is approximated by that of the homogeneous electron gas. LDA has proved
to be very efficient for extended systems, such as large molecules and solids.

But, as an approximation, the LDA cannot be successful for all systems although the
exact DFT should be capable of obtaining ground-state properties. Strongly correlated
materials are examples where deficiency of the LDA is seen most clearly. Such systems
usually contain transition metal or rare-earth metal ions with partially filled d (or f) shells.
When applying a one-electron method with an orbital-independent potential, like in the LDA,
to transition metal compounds, one has as a result a partially filled d band with metallic-
type electronic structure and itinerant d electrons. This is definitely a wrong answer for the
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late-transition-metal oxides and rare-earth metal compounds where d (f ) electrons are well
localized and there is a sizable energy separation between occupied and unoccupied subbands
(the lower Hubbard band and upper Hubbard band in a model Hamiltonian approach).

There were several attempts to improve on the LDA in order to take into account strong
electron–electron correlations. One of the most popular approaches is the self-interaction
correction (SIC) method [2]. It reproduces quite well the localized nature of the d (or f )
electrons in transition metal (rare-earth metal) compounds, but SIC one-electron energies
are usually in strong disagreement with spectroscopy data (for example for transition metal
oxides occupied d bands are≈1 Ryd below the oxygen valence band).

The Hartree–Fock (HF) method [3] is appropriate for describing Mott insulators because
it explicitly contains a term which cancels the self-interaction. The fact that the problem of
self-interaction is treated in an averaged way in the LDA is the main reason for which the
LDA spectra are in such strong qualitative disagreement with experimental data. However, a
serious problem of the Hartree–Fock approximation is the unscreened nature of the Coulomb
interaction used in this method. The ‘bare’ value of Coulomb interaction parameterU is
rather large (15–20 eV) while screening in a solid leads to much smaller values: 8 eV or
less [4, 5]. Due to the neglect of screening, the HF energy gap values are a factor of 2–3
larger than the experimental values [3].

The problem of screening is addressed in a rigorous way in the GW approximation
(GWA) [6, 7] which may be regarded as a Hartree–Fock theory with a frequency- and orbital-
dependent screened Coulomb interaction. The GWA has been applied with success to real
systems ranging from simple metals to transition metals but applications to more complex
systems have not been feasible up to now due to the large computational task. Another
problem in using the GW approximation is that in its practical realization [8] a response
function, needed to calculate the screened interaction, is computed with the help of the
energy bands and wave functions obtained in the LDA calculation. While such a procedure
is justified for the systems where correlation effects are small (such as semiconductors [9]),
for strongly correlated systems one may need a better starting Hamiltonian than the LDA.
This, for example, can be achieved by improving the LDA Hamiltonian using the calculated
self-energy in a self-consistent procedure [10].

In the present review, the so-called LDA+U method [11–13] is described where the non-
local and energy-dependent self-energy is approximated by a frequency-independent but non-
local screened Coulomb potential. A similar approximation is used in a model Hamiltonian
approach, which has proved to be successful in applications to strongly correlated systems
[14, 15].

2. The LDA + U method

As in the Anderson model [16] we separate electrons into two subsystems: localized
d or f electrons for which Coulomb d–d interaction should be taken into account by
a term 1

2U
∑

i 6=j ninj (ni are d-orbital occupancies) as in a mean-field (Hartree–Fock)
approximation, and delocalized s, p electrons which could be described by using an orbital-
independent one-electron potential (LDA). Let us consider a d ion as an open system with a
fluctuating number of d electrons. If we assume that the Coulomb energy of d–d interactions
as a function of total number of d electronsN = ∑

ni given by the LDA is a good
approximation (but not the orbital energies (eigenvalues)!), then the correct formula for this
energy isE = UN(N − 1)/2. Let us subtract this expression from the LDA total-energy
functional and add a Hubbard-like term (neglecting for a while exchange and non-sphericity).
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As a result we have the following functional:

E = ELDA − UN(N − 1)/2 + 1

2
U

∑
i 6=j

ninj . (1)

The orbital energiesεi are derivatives of (1) with respect to orbital occupationsni :

εi = ∂E/∂ni = εLDA + U

(
1

2
− ni

)
. (2)

This simple formula shifts the LDA orbital energy by−U/2 for occupied orbitals (ni = 1)
and by+U/2 for unoccupied orbitals (ni = 0). A similar formula is found for the orbital-
dependent potential (Vi(r) = δE/δni(r) where a variation is taken not on the total charge
densityn(r) but on the charge density of a particularith orbital ni(r)):

Vi(r) = VLDA(r) + U

(
1

2
− ni

)
. (3)

The LDA+U orbital-dependent potential (3) gives upper and lower Hubbard bands with
the energy separation between them equal to the Coulomb parameterU , thus reproducing
qualitatively the correct physics for Mott–Hubbard insulators. To construct a quantitatively
sound calculational scheme, one needs to define in a more general way an orbital basis set
and to take into account properly the direct and exchange Coulomb interactions inside a
partially filled d (or f ) atomic shell.

All one needs physically is the identification of regions in space where the atomic
characteristics of the electronic states have largely survived (‘atomic spheres’), which is not
a problem for at least d or f electrons. Within these atomic spheres one can expand in a
localized orthonormal basis|inlmσ 〉 (i denotes the site,n the main quantum number,l the
orbital quantum number,m the magnetic quantum number andσ the spin index). Although
not strictly necessary, let us specialize to the usual situation where only a particularnl-shell
is partly filled. The density matrix is defined by

nσ
mm′ = − 1

π

∫ EF

Im Gσ
inlm,inlm′(E) dE (4)

whereGσ
inlm,inlm′(E) = 〈inlmσ |(E − Ĥ )−1|inlm′σ 〉 are the elements of the Green function

matrix in this localized representation, whilêH will be defined later on. In terms of the
elements of this density matrix{nσ }, the generalized LDA+ U functional [13] is defined
as follows:

ELDA+U [ρσ (r), {nσ }] = ELSDA[ρσ (r)] + EU [{nσ }] − Edc[{nσ }] (5)

whereρσ (r) is the charge density for spin-σ electrons andELSDA[ρσ (r)] is the standard
LSDA (local spin-density approximation) functional. Equation (5) asserts that the LSDA
suffices in the absence of orbital polarizations, while the latter are driven by

EU [{n}] = 1

2

∑
{m},σ

{〈m, m′′|Vee|m′, m′′′〉nσ
mm′n

−σ
m′′m′′′

− (〈m, m′′|Vee|m′, m′′′〉 − 〈m, m′′|Vee|m′′′, m′〉)nσ
mm′n

σ
m′′m′′′ } (6)

whereVee are the screened Coulomb interactions among thenl-electrons. Finally, the last
term in equation (5) corrects for double counting (in the absence of orbital polarizations,
equation (5) should reduce toELSDA) and is given by

Edc[{nσ }] = 1

2
UN(N − 1) − 1

2
J [N↑(N↑ − 1) + N↓(N↓ − 1)] (7)
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were Nσ = Tr(nσ
mm′) and N = N↑ + N↓. U and J are screened Coulomb and exchange

parameters [4, 5].
In addition to the usual LDA potential, we find an effective single-particle potential to

be used in the effective single-particle Hamiltonian:

Ĥ = ĤLSDA +
∑
mm′

|inlmσ 〉V σ
mm′ 〈inlm′σ | (8)

V σ
mm′ =

∑
{m}

{〈m, m′′|Vee|m′, m′′′〉n−σ
m′′m′′′ − (〈m, m′′|Vee|m′, m′′′〉

− 〈m, m′′|Vee|m′′′, m′〉)nσ
m′′m′′′ } − U

(
N − 1

2

)
+ J

(
Nσ − 1

2

)
. (9)

TheVees remain to be determined. We again follow the spirit of the LDA+U method by
assuming that within the atomic spheres these interactions retain largely their atomic nature.
Moreover, it is asserted that the LSDA itself suffices to determine their values, following
the well-tested procedure of the so-called supercell LSDA approach [4]: the elements of the
density matrixnσ

mm′ have to be constrained locally and the second derivative of the LSDA
energy with respect to the variation of the density matrix yields the wanted interactions. In
more detail, the matrix elements can be expressed in terms of complex spherical harmonics
and effective Slater integralsFk [17] as

〈m, m′′|Vee|m′, m′′′〉 =
∑

k

ak(m, m′, m′′, m′′′)F k (10)

where 06 k 6 2l and

ak(m, m′, m′′, m′′′) = 4π

2k + 1

k∑
q=−k

〈lm|Ykq |lm′〉〈lm′′|Y ∗
kq |lm′′′〉.

For d electrons one needsF 0, F 2 and F 4 and these can be linked to the Coulomb and
Stoner parametersU and J obtained from the LSDA supercell procedures viaU = F 0

and J = (F 2 + F 4)/14, while the ratioF 2/F 4 is to a good accuracy a constant
∼0.625 for the 3d elements [18, 12]. (For f electrons the corresponding expression is
J = (286F 2 + 195F 4 + 250F 6)/6435.)

The new Hamiltonian in equation (8) contains an orbital-dependent potential in
equation (9) in the form of a projection operator. This means that the LDA+ U method is
essentially dependent on the choice of the set of the localized orbitals in this operator. That
is a consequence of the basic Anderson-model-like ideology of the LDA+ U approach:
the separation of the total variational space into a localized d- (f-) orbital subspace, with
Coulomb interaction between them treated with a Hubbard-type term in the Hamiltonian,
and the subspace of all other states for which the local density approximation for Coulomb
interaction is regarded as sufficient. The arbitrariness of the choice of the localized orbitals
is not as crucial as might be expected. The d (f ) orbitals for which Coulomb correlation
effects are important are indeed well localized in space and retain their atomic character in
a solid. The experience of using the LDA+U approximation in various electronic structure
calculational schemes shows that the results are not sensitive to the particular form of the
localized orbitals.

Due to the presence of the projection operator in the LDA+ U Hamiltonian in
equation (8), the most straightforward calculational scheme would be to use atomic-orbital-
type basis sets, such as the LMTOs (linear muffin-tin orbitals) [19]. However, as soon as
localized d orbitals (f orbitals) are defined, the Hamiltonian in equation (8) can be realized
even in schemes using plane waves as a basis set, such as pseudopotential methods.
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3. The relationship between the LDA+ U and GW methods

Although there is no theoretical justification, it is customary to interpret the Kohn–
Sham (KS) eigenvalues in the DFT as quasiparticle energies measured in photoemission
experiments. A proper way of calculating quasiparticle energies is provided by the Green
function theory. In this approach, the many-body effects are contained in the self-energy
operator6 which is non-local and energy dependent:

H0(r)9(r) +
∫

dr1 6(r, r1, E)9(r1) = E9(r) (11)

where H0 contains the kinetic energy, the Hartree potential and a possible one-particle
external potential. We can think of the DFT exchange–correlation potentialVxc as a a local
and energy-independent approximation to the self-energy which gives the correct ground-
state density. However, in some cases, the non-locality (orbital dependence) and energy
dependence are crucial for obtaining excitation spectra.

Unfortunately, the self-energy is very hard to calculate and we have to resort to
approximations. The simplest approximation to the self-energy, derived from the many-
body perturbation theory, is the GW approximation [6, 7]. But even in this simplest
approximation, the computational effort required is already quite large.

It can be shown that the GWA and LDA+U theories are both Hartree–Fock-like theories
and, at least for localized states, such as d or f orbitals of transition metal or rare-earth metal
ions, the LDA+ U theory may be regarded as an approximation to the GWA.

The GWA is given by

6(r, r′; ω) = i

2π

∫ ∞

−∞
dω′ G(r, r′; ω + ω′)W(r, r′; ω′)eiδω′

. (12)

W is a screened Coulomb potential obtained from the inverse dielectric function:

ε−1(r, r′; ω) = δ(r − r′) +
∫

d3r ′′ v(r′ − r′′)P (r′′, r′; ω) (13)

whereP is the full response function. We then have

W(r, r′; ω) =
∫

d3r ′′ ε−1(r, r′′; ω)v(r′′ − r′) = v(r − r′) + Wc(r, r′; ω) (14)

where

Wc(r, r′; ω) =
∫

d3r1 d3r2 v(r′ − r1)P (r1, r2; ω)v(r2 − r′). (15)

The time-ordered Green function may be written in the spectral representation:

G(r, r′; ω) =
∫ µ

−∞
dω′ A(r, r′; ω′)

ω − ω′ − iδ
+

∫ ∞

µ

dω′ A(r, r′; ω′)
ω − ω′ + iδ

(16)

where

A(r, r′; ω) = − 1

π
Im G(r, r′; ω) sgn(ω − µ). (17)

In practice we use a zeroth-order Green function, so

A(r, r′; ω) =
∑
kn

ψkn(r)ψ∗
kn(r

′)δ(ω − εkn). (18)

The self-energy can now be evaluated and we obtain

6(r, r′; ω) = 6x(r, r′) + 6c(r, r′; ω) (19)
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where6x is the bare exchange potential

6x(r, r′) = −
occ∑
kn

ψkn(r)ψ∗
kn(r

′)v(r − r′) (20)

and6c is the correlated part of the self-energy given by

6c(r, r′; ω) =
occ∑
kn

ψkn(r)ψ∗
kn(r

′)W−
c (r, r′; ω − εkn)

+
unocc∑

kn

ψkn(r)ψ∗
kn(r

′)W+
c (r, r′; ω − εkn) (21)

where

W±
c (r, r′; ω) = i

2π

∫ ∞

−∞
dω′ Wc(r, r′; ω′)

ω + ω′ ± iδ
. (22)

In short we can write

6(r, r′; ω) = −
∑
kn

ψkn(r)ψ∗
kn(r

′)W0(r, r′; ω − εkn) (23)

where

W0(r, r′; ω − εkn) ≡ [v(r − r′) − W−
c (r, r′; ω − εkn)]θ(µ − εkn)

− W+
c (r, r′; ω − εkn)θ(εkn − µ). (24)

The self-energy in the GWA has the same form as that in the HFA except that it depends
on the energy and contains a term which depends on unoccupied states as a consequence
of correlation effects. Thus the GWA can be interpreted as a generalization of the Hartree–
Fock approximation (HFA) with a potentialW0 which contains dynamical screening of the
Coulomb potential. Note, however, thatW0 is not the same as the dynamically screened
potentialW .

The LDA + U theory is designed to give the self-energy correction to localized states
embedded in delocalized states. The localized states have a large Coulomb correlation
which is accounted for by theU -term whereas the delocalized states are well described by
the LDA. To make a connection between the GWA and the LDA+ U theory we consider
the correlated part of the self-energy in the GWA for an occupied core-like stateψd :

〈ψd |6c(εd)|ψd〉 = 〈ψdψd |W−
c (0)|ψdψd〉 +

occ∑
kn6=d

〈ψdψkn|W−
c (εd − εkn)|ψknψd〉

+
unocc∑

kn

〈ψdψkn|W+
c (εd − εkn)|ψknψd〉. (25)

Strictly speaking, the self-energy should be evaluated at the new energyEd = εd + self-
energy correction and this is understood to be the case here. Ifψd is localized and well
separated in energy from other states, then the first term is evidently much larger than
the rest. The last term contains unoccupied9d states but they are orthogonal to the
occupied ones so this term is much smaller than the first. Thus we may make the following
approximation:

〈ψd |6c(εd)|ψd〉 ≈ 〈ψdψd |W−
c (0)|ψdψd〉 = −1

2
〈ψdψd |Wc(0)|ψdψd〉. (26)
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The last step can be shown as follows. The correlated part of the screened potential can be
written in terms of its spectral representation:

Wc(ω) =
∫ 0

−∞
dω′ B(ω′)

ω − ω′ − iδ
+

∫ ∞

0
dω′ B(ω′)

ω − ω′ + iδ
(27)

where

B(ω) = − 1

π
Im Wc(ω) sgn(ω). (28)

Wc is an even function ofω so B(ω) is odd. We can now calculate

Wc(0) =
∫ 0

−∞
dω′ B(ω′)

−ω′ − iδ
+

∫ ∞

0
dω′ B(ω′)

−ω′ + iδ
= −2

∫ ∞

0
dω′ B(ω′)

ω′ − iδ
(29)

using the fact thatB(ω) is odd, and

W−
c (0) = i

2π

∫ ∞

−∞
dω′ Wc(ω

′)
ω′ − iδ

= i

2π

∫ ∞

−∞
dω′ 1

ω′ − iδ

{∫ 0

−∞
dω′′ B(ω′′)

ω′ − ω′′ − iδ
+

∫ ∞

0
dω′′ B(ω′′)

ω′ − ω′′ + iδ

}
=

∫ ∞

0
dω′′ B(ω′′)

ω′′ − iδ
= −1

2
Wc(0). (30)

This is a correction due to the work done on the electron by the polarization field from
zero toWc(0) [6]. A similar result

+1

2
〈ψdψd |Wc(0)|ψdψd〉

is obtained for an unoccupied core-like state of the same character, so the energy separation
of the states is

1 = εHF
2 − εHF

1 + 〈ψdψd |Wc(0)|ψdψd〉 = 〈ψdψd |v|ψdψd〉 + 〈ψdψd |Wc(0)|ψdψd〉
= 〈ψdψd |W(0)|ψdψd〉 (31)

which agrees with the intuitive result that the ‘gap’ is given by the screened Coulomb
interaction:1 = U ≈ W(0).

Within the above approximation, the GW self-energy for a localized state is given by

6(r, r′; εd) = 6x(r, r′) +
∑
kn=d

ψkn(r)ψ∗
kn(r

′)W 0
c (r, r′; εd) (32)

with

W 0
c (r, r′; εd) = −1

2
Wc(r, r′; 0)[θ(µ − εd) − θ(εd − µ)]. (33)

It is clear that the self-energy correction to the LDA

16(r, r′; εd) = 6(r, r′; εd) − V LDA
xc (r)δ(r − r′) (34)

should be equated to theU -term in the LDA+ U scheme. In the spirit of the LDA+ U

scheme and the Anderson impurity model, let us divide the space into localized states{φm},
such as d or f states, and delocalized states{ψkn}:

δ(r − r′) =
∑
m

φm(r)φ∗
m(r′) +

∑
kn

ψkn(r)ψ∗
kn(r

′). (35)
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The self-energy correction can be written as follows:

16(r, r′; εd) =
∑
mm′

φm(r) 16mm′(εd) φ∗
m′(r′) +

∑
knn′

ψkn(r) 16nn′(εd) ψ∗
kn′(r′)

+
∑
knm

ψkn(r) 16nm(k, εd) φ∗
m(r′) +

∑
kmn

φm(r) 16mn(k, εd) ψ∗
kn(r

′).

(36)

Since we are interested in the localized states{φm}, the first term will dominate and therefore

16(r, r′; εd) ≈
∑
mm′

φm(r) 16mm′(εd) φ∗
m′(r′) (37)

where

16mm′(εd) = 〈φm|6x − Vxc|φm′ 〉 +
∑
m′′m′′′

〈m, m′′|W 0
c |m′′′, m′〉nm′′,m′′′ (38)

with

nm′′,m′′′ =
∑
kn=d

〈φm′′ |ψkn〉〈ψkn|φm′′′ 〉. (39)

We note that the orbitals{φm} can always be chosen to be localized within the atomic spheres.
The rest of the self-energy correction is small and if necessary it can be incorporated into
the one-particle term.

Let us suppose that we have a d ion with d orbitalsψmσ only. Within the above
approximation, the GW self-energy for a localized state is given by

6(r, r′; εmσ ) = 6x(r, r′) +
∑
m′σ ′

ψm′σ ′(r)ψ∗
m′σ ′(r′)W 0

c (r, r′; εmσ ) (40)

with

W 0
c (r, r′; εmσ ) = −1

2
Wc(r, r′; 0)[θ(µ − εmσ ) − θ(εmσ − µ)]. (41)

What will be the matrix element of the total potential of the electron–electron interaction
in the GWA?

〈ψmσ |VHartree + 6x + 6c|ψmσ 〉

=
occup∑
m′σ ′

∫ ∫
dr dr′ ψ∗

mσ (r)ψmσ (r)v(r − r′)ψ∗
m′σ ′(r′)ψm′σ ′(r′)

−
occup∑

m′

∫ ∫
dr dr′ ψ∗

mσ (r)ψm′σ ′(r)v(r − r′)ψmσ (r′)ψ∗
m′σ ′(r′)

+
(

1

2
− nmσ

) ∑
m′

∫ ∫
dr dr′ ψ∗

mσ (r)ψm′σ ′(r)

× Wc(r, r′, 0)ψmσ (r′)ψ∗
m′σ ′(r′) (42)

wherenmσ is the occupancy of themσ -orbital which is equal to 1 ifµ − εmσ > 0 and 0 if
µ − εmσ < 0.

The above matrix element can be written in the form

V GWA
mσ =

∑
m′σ ′

U0
mm′nm′σ ′ − U0

mmnmσ −
∑
m′ 6=m

Jmm′nm′σ +
(

1

2
− nmσ

) ∑
m′

Wmm′
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whereU0
mm′ is theunscreenedCoulomb interaction matrix,Jmm′ is the exchange matrix and

the Wmm′ are the matrix elements of the correlation potentialWc(r, r′, 0). If we define the
screening parameterW as

W = −
∑
m′

Wmm′

then the final formula for the GWA potential matrix element will be

V GWA
mσ =

∑
m′σ ′

U0
mm′nm′σ ′ − (U0

mm − W)nmσ −
∑
m′ 6=m

Jmm′nm′σ − 1

2
W.

To write down a GWA-type correction to the LSDA we must express the matrix element
of the LSDA potential in the same form as above. As the LSDA is not derived from the
orbital–orbital interaction formalism but is given as some effective local orbital-independent
potential using the electron density dependence of the Coulomb interaction energy as in the
homogeneous electron gas, it is not possible to do it in a rigorous way. Let us look
at the energy of the electron–electron interaction in the d ion as a function of the total
number of d electronsN , ELSDA[ρ(r)] = ELSDA[N |ψmσ (r)|2]. It is known that while
one-electron eigenvalues are not so good in the LSDA, the total-energy values are in much
better agreement with more rigorous calculations. So we can suppose that Hartree–Fock
formulae could be a good approximation:

ELSDA[ρσ (r)] = ELSDA[Nσ |ψmσ (r)|2]

= 1

2
F 0N(N − 1) − 1

4
JN(N − 2) − 1

4
J (N↑ − N↓)2 (43)

whereF 0 is a first Slater integral,J is an exchange parameter and

Nσ =
∑
m

nmσ N = N↑ + N↓.

The LSDA electron interaction potential is a variational derivative of the total energy
as a functional of the electron densityρ(r):

V σ
LSDA(ρ(r)) = δELSDA[ρ(r)]

δρσ (r)
.

The derivative of the interaction energy as a function of the total number of d electrons
Nσ is

∂ELSDA[Nσ |ψmσ (r)|2]

∂Nσ

=
∫

dr
δELSDA[ρ(r)]

δρσ (r)

∂ρσ (r)

∂Nσ

=
∫

dr V σ
LSDA(ρ(r))|ψmσ (r)|2

= F 0N − 1

2
(F 0 − J ) − JNσ . (44)

That gives us the matrix element of the LSDA potential:

V LSDA
mσ = F 0N − 1

2
(F 0 − J ) − JNσ

The GWA correction to the LSDA potential is:

δVmσ = V GWA
mσ − V LSDA

mσ

=
∑
m′σ ′

U0
mm′nm′σ ′ − (U0

mm − W)nmσ −
∑
m′ 6=m

Jmm′nm′σ − 1

2
W

− F 0
∑
m′σ ′

nm′σ ′ + J
∑
m

nmσ + 1

2
(F 0 − J )
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=
∑
m′σ ′

(U0
mm′ − F 0)nm′σ ′ − (U0

mm − W)nmσ −
∑
m′ 6=m

Jmm′nm′σ

− 1

2
W + J

∑
m

nmσ + 1

2
(F 0 − J ). (45)

The differenceU0
mm′ − F 0 does not depend on the Slater integralF 0 (it depends only

on the Slater integralsFk with k 6= 0) and is equal toUmm′ − U whereU = F 0 − W is a
screened Coulomb parameter andUmm′ is a screened Coulomb matrix.

δVmσ = V GWA
mσ − V LSDA

mσ

=
∑
m′

Umm′nm′−σ +
∑
m′ 6=m

(Umm′ − Jmm′)nm′σ − U

(
N − 1

2

)
+ J

(
Nσ − 1

2

)
.

(46)

The above formula is equivalent to the LDA+ U potential correction equation (9) if
the occupation matrix (4) is diagonal:

nσ
mm′ = nmσ δmm′

Umm′ = 〈m, m′|Vee|m, m′〉
Jmm′ = 〈m, m′|Vee|m′, m〉.

The only (and the essential) difference is the procedure for calculating the screened Coulomb
parameterU . In the LDA + U method it was done by a constrained LSDA supercell
calculation and in the GWA it requires the difficult computation of the response function.

We have established a relationship between the GWA and LDA+ U theory by
recognizing that both are Hartree–Fock-like theories, thus giving a theoretical justification
for the latter. At least for localized states, such as d or f states where on-site Coulomb
correlation is very important, the LDA+U theory may be regarded as an approximation to
the GWA. Whether they give the same results depends on three main things.

(1) How close is the value ofU to the static screened potentialW(0)?
(2) How important is the energy dependence ofW which is neglected in the LDA+ U

theory?
(3) How important is self-consistency which is imposed in the LDA+ U calculations

but not normally in the GW calculations?

4. Localized states: 3d and 4f orbitals

4.1. Gd

Gd metal is a good test to check how physically sound the approximations are which were
used in the derivation of the LDA+ U formula presented above. The Gd ion has seven f
electrons so the majority-spin subshell is completely filled and the minority-spin subshell
is empty. The hybridization of the localized f orbitals with the conduction bands is small
and the 4f shell could be regarded with good accuracy as that of the Gd3+ ion in the8S7/2

ground state, well separated from all other excited terms. That means that the ground state
is well described by a single-Slater-determinant wave function and the LDA+ U theory
as a one-electron theory is valid here. The finalN − 1 andN + 1 states of the removal
(XPS) and addition (BIS) spectra are also well described by a single Slater determinant (7F,
neglecting spin–orbit coupling which gives splitting of the order of less than 1 eV). As a
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Figure 1. The density of states for ferromagnetic Gd metal from LDA+U calculation and results
of BIS (bremsstrahlung isochromat spectroscopy) and XPS (x-ray photoemission spectroscopy)
experiments.

result, the theoretical XPS and BIS are (again neglecting spin–orbit coupling) single lines
separated byU + 6J . The calculation for Gd [20] givesU = 6.7 eV andJ = 0.7 eV thus
resulting in a theoretical value of the splitting between occupied and unoccupied 4f bands
≈11 eV in good agreement with the experimental value,≈12 eV (figure 1).

The advantage of the LDA+U method is the ability to treatsimultaneouslydelocalized
conduction band electrons and localized 4f electrons in the same computational scheme. For
such a method it is important to be sure that the relative energy positions of these two types
of band are reproduced correctly. The example of Gd gives us confidence in this (figure 1):
there is a good agreement between calculated and experimental spectra not only for the
separation between 4f bands but also for the position of the 4f peaks relative to the Fermi
energy. Gd is usually presented as an example where the LSDA gives the correct electronic
structure due to the spin-polarization splitting of the occupied and unoccupied 4f bands (in
all other rare-earth metals LSDA gives an unphysical 4f peak in the Fermi energy). In the
LSDA, the energy separation between 4f bands is not only strongly underestimated (the
exchange splitting is only 5 eV instead of the experimental value of 12 eV) but also the
unoccupied 4f band is very close to the Fermi energy thus strongly influencing the Fermi
surface and magnetic ground-state properties (in the LSDA calculation the antiferromagnetic
state is lower in total energy than the ferromagnetic one in contradiction to the experiment).
The LDA + U theory solves both of these problems [20].

4.2. Transition metal impurities in alkaline metals

The d orbitals of transition metal ions are much less localized compared with the 4f orbitals
of the rare-earth metal ions. The hybridization of the d states between themselves and the
s and p states in transition metals results in d-band widths of a few eV. However, there is
one case where d shells of transition metal atoms show properties typical for free ions: 3d
and 4d impurities introduced into alkali metal hosts by ion implantation [21]. While it is
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typical for 3d ions in solids to have local magnetic moments, experimental observation of
magnetic moments on 4d impurities in Rb is very unusual. Moreover, there are indications
that even the orbital moment is not quenched in these systems.

The reason for this is the large value of the Wigner–Seitz volume of Rb atoms compared
with that of transition metal atoms. As a result, the energy of the d states falls to the bottom
(or even below the bottom) of the alkali metal conduction band and their hybridization with
the hosts states becomes very small, leading to narrow resonant states, similar to the f bands
in the rare-earth metals. The calculated impurity density of states [22] has the form of very
narrow delta-function-like peaks, thus justifying a discrete-level free-ion description of the
electronic structure of these impurities.

Figure 2. Positions of the one-electron levels with respect to the Fermi energy obtained in the
framework of the LDA+U theory for two valence states (T2+ and T1+) of 3d impurities in Rb.
The solid (dashed) lines were used for the states which were supposed to be occupied (empty)
[23].

LDA +U calculations for d impurities in Rb [22, 23] (figure 2) showed that the majority
of elements have the T1+ valence state (where T is any transition metal), having one d
electron more than in a free atom. The Pd impurity has an unusual d10 configuration
resulting in a non-magnetic state while all other impurities are magnetic, which agrees well
with experimental data [21].

4.3. Cerium monopnictides: CeSb

While usually 4f orbitals of rare-earth ions could be regarded as semi-core states, in
some rare-earth compounds hybridization of 4f orbitals with other states can be physically
important. Examples of such systems are cerium monopnictides with their unusual magnetic
properties. Among the pnictides CeSb has a special position. In addition to the anomalies
inherent to all monopnictides, CeSb has a large magnetic anisotropy together with a small
crystal-field splitting, an extremely complicated magnetic phase diagram, and the largest
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known Kerr angle [24].
The standard LSDA approach, where 4f orbitals are treated as band states, fails to

predict the ground-state properties: the value of the equilibrium magnetic moment, the
additional orbits found in de Haas–van Alphen experiments, and the small density of states
at the Fermi level [25]. But exclusion of 4f orbitals from the basis set (treating them as
completely localized pseudo-core states) also did not lead to a satisfactory description of
electronic and magnetic properties of CeSb. On the other hand, an empirical p–f model
with a localized 4f level 2–3 eV belowEF hybridizingwith the conduction band electrons
was able to describe CeSb qualitatively [26].

Figure 3. A schematic picture of Hubbard-induced anisotropy formation in the LDA+U scheme
for CeSb: (a) normal LDA structure of p and f bands in CeSb; (b) a shift of one f state of
Ce (predominantly withm = −3 character); (c) the results of strong p–f hybridization and the
creation of a highly polarized structure of p states of Sb [20].

The results of the LDA+ U calculation for CeSb [27] gave some support to the
above-mentioned empirical p–f model. Without spin–orbital coupling, it was found that the
Hartree–Fock-like one-electron 4f spin-up states with predominantlym = 3 andm = −3
character have the lowest total energy. This is in agreement with the first and second of
Hund’s rules. One should note that the symmetry of such orbitals is not cubic any more and
Jahn–Teller tetragonal distortions give a lower energy. The spin–orbital coupling (∼0.5 eV)
lifts the degeneracy of them = ±3 states according to the third Hund’s rule and the lowest
energy corresponds to the|−3↑〉 one-electron state (the spin and orbital moments are equal
to −0.92µB and 2.86µB yielding a total magnetic moment of 1.94µB , which is close to
the experimental value obtained for the antiferromagnetic ground state,(2.10 ± 0.04)µB

[24] (figure 3).
The band structure of CeSb obtained in the LDA+ U calculation (figure 4) has f bands

split by approximately 6 eV, and the singly occupied f band is located at 2 eV below the
Fermi level. All unoccupied f bands are at approximately 4 eV aboveEF and the broad
bands which cross the Fermi level are formed by Sb p states. There is a large reduction of
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Figure 4. The band structure of ferromagnetically ordered CeSb. Both Rydberg and electron
volt scales are shown [27].

Table 1. Experimental (exp) and calculated (LDA+U and LSDA) spin moment (m in µB ) and
energy gap (E in eV) values of the late-3d-transition-metal oxides.

ELSDA ELDA+U Eexp mLSDA mLDA+U mexp

CaCuO2 0.0 2.10 1.5 0.0 0.66 0.51
CuO 0.0 1.9 1.4 0.0 0.74 0.65
NiO 0.2 3.1 4.3, 4.0 1.0 1.59 1.77, 1.64, 1.90
CoO 0.0 3.2 2.4 2.3 2.63 3.35, 3.8
FeO 0.0 3.2 2.4 3.4 3.62 3.32
MnO 0.8 3.5 3.6–3.8 4.61 1.67 4.79, 4.58

the density of states at the Fermi level with an LDA+U value ofN(EF ) = 6.5 states Ryd−1

compared to the LSDA value of about 150 states Ryd−1. The occupied f band with mostly
m = −3 character interacts in a very anisotropic way with Sb p bands and even pushes one
of the p states (mostly ofm = 1 character) above the Fermi level along the0–Z direction, but
not in the0–X direction. This electronic structure leads to an anisotropic Fermi surface (FS)
which almost coincides with the FS in the p–f model [26]. The anisotropic p–f interaction
helps explain the anomalous magnetic properties of CeSb with strong magnetic anisotropy
in the ferromagnetically ordered phase (the calculated value of the magnetic anisotropy as
the total-energy difference for the magnetic field along [001] and [110] directions is 2.4 meV
(standard LSDA calculations give 0.54 meV)). Such anisotropic p–f mixing for different
m-subbands near the Fermi level, together with the large spin–orbital coupling of Sb p states
(∼0.6 eV), leads to particularly strong magneto-optical effects.

4.4. PrBa2Cu3O7

Another case where the hybridization of the nearly localized f orbitals with the band
states near the Fermi level leads to anomalous effects is PrBa2Cu3O7. Among all rare
earths (RE) that form the ReBaCu3O7 structure only PrBa2Cu3O7 is non-metallic and non-
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Figure 5. The LDA + U electron band structure of PrBa2Cu3O7 for the majority spin. The
thick line shows the depleted part of the Fehrenbacher–Rice band. The hatched strip indicates
the position of this band in the spin-minority channel (or in YBa2Cu3O7) [29].

superconducting. The only satisfactory model which qualitatively explains this puzzle is
that of Fehrenbacher and Rice [28] which assumes a hole depletion in the CuO2 planes
due to the transfer of holes from the Cu–O pdσ band into a p–f hybridized state which
is a mixture of 4f1 and 4f2L configurations (L is a ligand hole in the O 2p orbital with
z(x2 −y2) symmetry around the Pr site and distributed over the eight nearest oxygen sites).

The results of the LDA+ U calculation for PrBa2Cu3O7 [29] have fully confirmed the
Fehrenbacher and Rice model. In this calculation, the correlation correction (equation (9))
was applied to the Pr 4f orbitals only and not to Cu 3d orbitals. The reason for this is that
while LDA + U correction to a potential acting on d orbitals is necessary and sufficient for
describing the insulating state of transition metal oxides with partially filled d shells [11],
transition from an antiferromagnetic insulator to a paramagnetic metal with doping by holes
is beyond the scope of the mean-field approximation. This ‘Pr− U -only’ calculation was
done to describe transfer of holes from the Cu–O pdσ band into the p–f hybridized state.

For PrBa2Cu3O7 the LDA + U calculations yield occupied
√

1 − α2
Prf

↑
z(x2−y2)

+ αPrL
↑

and f↑
z(5z2−3)

bands (αPr ∼ 0.2), and a partly occupied antibondingαPrf
↑
z(x2−y2)

+
√

1 − α2
PrL

↑

band with a cylindrical hole pocket around the SR line (π/a, π/b, kz) (figure 5). This partly
occupied band grabs holes which normally would be in a Cu–O pdσ band thus reducing its
effective doping and making its occupation closer to half-filling where the stable electronic
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Figure 6. The total and partial densities of states of Cu and O in CaCuO2. O 2px and O
2py,z refer to the oxygen orbitals pointing towards and perpendicular to the Cu 3dx2−y2 orbitals,
respectively [11].

state is known to be an antiferromagnetic insulator. In NdBaCu3O7, the on-site f↑
z(x2−y2)

electron energy is so low that the top of the antibondingαNd f↑
z(x2−y2)

+
√

1 − α2
NdL

↑ band
(αNd < αPr) has fallen to∼0.3 eV below the Fermi energyEF . A relatively low degree of
doping with Pr could, however, push the top of this band partially aboveEF .

5. Mott–Hubbard insulators: transition metal compounds

5.1. 3d-transition-metal oxides

The electronic structure of the rare-earth metal compounds is a relatively simple problem
due to the weak hybridization of 4f orbitals with the conduction band states. The advantages
of the simultaneous treatment of the localized and delocalized electrons in the LDA+ U
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Figure 7. The total and partial densities of states of NiO [11].

method are seen most clearly for the transition metal compounds, where 3d electrons,
while remaining localized, hybridize quite strongly with other orbitals. Late-transition-
metal oxides, for which LSDA results strongly underestimate the energy gap and magnetic
moment values (or even give qualitatively wrong metallic ground states for the insulators
CoO and CaCuO2), are well described by the LDA+ U method [11] (see table 1).

In figures 6–8 the partial densities of states (DOSs) of CaCuO2, NiO and CoO are
shown. The DOSs of FeO and MnO are similar to that of CoO, except for the growing
number of unoccupied t2g bands. First, focusing on the unoccupied density of states of NiO
(figure 7), one can see that all of the weight is concentrated in the narrow eg↓ peak, in
agreement with experimentally observed d8 −→ d9 peak [30]. In CoO (figure 8) the 3dxy↓
orbital is emptied too, and this band is located at∼0.5 eV lower energy. This crystal-field
splitting of the unoccupied d band is also found experimentally [31]. Comparing now the
unoccupied DOS of CoO or NiO with that of CaCuO2, we found that the width of the
3dx2−y2↓ band of the cuprate is larger by a factor of 4–5 compared to that of the rock-salt
oxides. As a result, a sharp d9 −→ d10 peak is missing, which is in striking agreement with
experiment [32]. This is obviously related to the formation of a broad Cu 3dx2−y2−O 2p
band caused by the relatively small in-plane Cu–O bond length and a Cu–O–Cu bond angle
of 180◦. In CuO, on the other hand, the bond angles are much smaller (between 96◦ and
146◦) so two neighbouring Cu 3dx2−y2 orbitals hardly couple via the same (2px or 2py)
O orbital. One expects thus a strong decrease of the band width in going from CaCuO2

to CuO [33], despite the similarity of the two systems on a local level [34]. In figure 9,
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Figure 8. The total and partial densities of states of CoO. Notice the inequivalence of the t2g

orbitals, due to the orbital dependence of the LDA+ U potentials [11].

the results of the LDA+ U calculation for the DOS of CuO are shown. The CuO crystal
structure has four equivalent Cu atoms per unit cell. Experimentally, the unoccupied DOS
of CuO is characterized by a relatively sharp peak corresponding to the unoccupied d band,
which is in strong contrast to the ‘blurred’ unoccupied DOS of the high-Tc cuprates [35].
The LDA+U results suggest that this difference comes from the smaller band width in the
former (figure 9).

In the case of NiO, the LDA+ U results are less conventional. In the past the peak at
the top of the occupied valence band (corresponding to the lowest-binding-energy (BE) peak
in the photoemission spectrum) has been ascribed to the high-spin dn−1 state (an additional
photoelectron hole in the t2g↓ orbital) and the higher-BE shoulder to the low-spin state (a
photoelectron hole in the eg↑ orbital) [36], and this is also the outcome of several many-
body-model calculations [37, 14]. According to our calculations, this high-spin–low-spin
identification has to be reversed. The peak at the top of the valence band in NiO is clearly
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Figure 9. The total and partial densities of states of CuO. Compared to the case for CaCuO2,
the unoccupied-, as well as the occupied-local-singlet, band widths are decreased [11].

of eg↑ character and of the same sort as for the 3dx2−y2↑ in the cuprates. This low-spin
nature of the lowest ionization state of NiO is in agreement with experiment. This follows
unambiguously from doping experiments. NiO can be doped with a large concentration of
Li, and the Ni(III) compound LiNiO2 is especially well characterized [38]. In this compound,
every second (111) plane of Ni is replaced by a plane of Li and the local environment of
Ni ions barely changes. LiNiO2 is thus from a local perspective representative for NiO.
According to x-ray absorption spectroscopy (XAS) data, the additional holes (introduced
by Li doping) have O 2p character [39]. Further, LiNiO2 is a low-spin (S = 1

2) material
[40]. The many-body interpretation is as follows: the added hole goes predominantly in
the oxygen band and it gets antiferromagnetically bound to the Ni spin.

The results of LDA+ U calculations for LiNiO2 [11] are shown in figure 10 for the
most stable (ferromagnetic, ferro-orbital-ordered) ground-state configuration. Compared to
NiO, there are some similarities. One still can see a rather narrow eg↓ unoccupied 3d band
at roughly the same position as in NiO, relative to the first occupied state. The new aspect
is that a new unoccupied band of predominantly O 2p character is found inside the ‘NiO’
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Figure 10. The total and partial densities of states of LiNiO2 [11].

gap, which is centred just aboveEF . This is the same pattern as found by Kuiperet al [39]
in their XAS data. The magnetic moments values are 1.30µB and−0.15µB at the Ni and
O site, respectively, and the net moment per NiO2 unit is therefore exactly 1µB (S = 1

2).

5.2. Fe impurity in MgO

The description of the electronic state of 3d impurities in insulators is another example
where Coulomb interactions inside the d shell must be properly taken into account in order
to cure the deficiency of the LSDA. The ground state of the Fe impurity in MgO [41] is
5T2 (configuration t42ge2

g) thus showing a high-spin magnetic Jahn–Teller ion. However, an

LSDA supercell calculation results in a non-magnetic solution with configuration t6
2ge0

g. The
reason for this is that in a magnetic configuration the Fermi level of the LSDA solution
crosses two narrow peaks (spin-down t2g and spin-up eg) and such a solution would be
therefore energetically very unfavourable. The orbital-dependent potential of the LDA+ U
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Figure 11. The spin-resolved total density of states (DOS) and local orbital-resolved DOS at
the Fe site in FeMg7O8 for the optimized geometry (LDA+ U result) [41].

method splits partially occupied bands and results in a stable insulating magnetic solution
with configuration t42ge2

g (figure 11).
The configuration t4

2ge2
g has a partially filled spin-down t2g band and it is known that Fe

impurity in MgO exhibits a dynamic Jahn–Teller behaviour. The optimization of the lattice
around an impurity atom in the LDA+ U calculation agreed quite well with this fact: the
total energy has a minimum as a function of tetragonal distortion of the O6 octahedron for
the value of 0.5% of the lattice constant.

Although substitutional Fe in MgO exists mostly as a 2+ ion, the Fe3+ configuration is
also known to exist. Most probably Fe3+ ions are formed due to the trapping of holes at
Fe2+ sites. A supercell LDA+ U calculation with one electron less than the stochiometric
value indeed led to the hole being localized on an impurity site with the Fe ion in the Fe3+

state (the high-spin t3
2ge2

g configuration).

5.3. Linear chain (MX) compounds

The halogen-bridged transition metal linear-chain compounds, referred to as MX compounds
because of their alternating transition metal atoms M and halogen atoms X, form weakly
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Figure 12. The total and partial densities of states at the Ni site for a Ni-based MX chain
compound. (a) The LSDA result; (b), (c) the LDA+ U result [43].
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Figure 13. The dependence of the total energy of KCuF3 on the quadrupolar lattice distortion
obtained in calculations with LSDA and LDA+ U functionals [13].

coupled linear-chain-like structures and are of considerable interest due to a rich phase
diagram. They exhibit a charge-density wave (CDW) with dimerization distortion as well as
a spin-density wave (SDW) or even a peculiar mixture of them (the spin–Peierls state) [42].

While the LSDA successfully describes CDW systems (for example Pt-based MX
compounds) it fails to give the correct antiferromagnetic insulator solution for Ni-based
MX predicting instead a non-magnetic metal. This problem has the same origin as for
the undoped cuprate superconductor materials: the fact that in the LSDA the magnetic
transition is driven by the spin polarization of a Stoner intra-atomic exchange interactionI

(about 1 eV), instead of the much stronger Hubbard interactionU (about 8 eV). Again, as
was the case with CaCuO2 and La2CuO4, using the LDA+ U functional gave the correct
antiferromagnetic insulating-ground-state Ni-based MX compound [43], while dimerization
distortion did not lead to the total energy lowering as it did with the Pt-based systems. It is
interesting to note that due to the large ligand-field splitting the Ni3+ ion in these compounds
has a low-spin ground state (configuration t6

2ge1
g) (figure 12).

6. Electron–lattice interaction: Jahn–Teller distortions and polarons

We must emphasize here that in spite of the model Hamiltonian spirit in the above derivation
of the LDA + U formula, it remains a ‘first-principles’, ‘ab initio’ method preserving
its ability to calculate the lattice properties such as the ground-state crystal structure,
equilibrium volume and even phonon frequencies. The orbital-dependent potential of
the LDA + U method (9) makes it possible to treat properly the orbital polarization and
corresponding to it the lattice Jahn–Teller distortions and polarons [13, 44].

6.1. Jahn–Teller distortions: KCuF3

These were demonstrated for the example for the perovskite KCuF3 [13]. This compound
is subject to a collective Jahn–Teller-like distortion which is more complicated than the
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simple tetragonal distortion of the cuprates, involving a staggering of quadrupolar-distorted
CuF4 units (two short and two long Cu–F bonds) in thea–b planes. In a seminal work,
Kugel and Khomskii [45] pointed out that this distortion is in the first instance electronically
driven. They showed that the eg (x2 − y2, 3z2 − 1) orbital degrees of freedom are, like
the spins, subject to kinetic exchange interactions, while in addition, the spin and orbital
degrees of freedom are mutually coupled as well. Orbital ordering is found from these
Hamiltonians involving a staggering of the orbitals ina–b directions (∼x2−z2, y2−z2) and
a ferromagnetic ordering of the spins. Because of this ‘pre-existing’, electronically driven
orbital polarization, any non-zero electron–phonon interaction then leads automatically to
the observed lattice distortion [45].

Figure 14. A three-dimensional plot of the electron spin-density distribution in KCuF3 from the
results of LDA+ U calculations. Note thatx2 − y2- and y2 − z2-like ‘d orbitals’ correspond
to the spin density located at the copper atoms, while p-like density corresponds to fluorine
ions [13].

KCuF3 has the perovskite crystal structure with a slight tetragonal distortion (c/a ratio
< 1) while the planes show quadrupolar distortion. The spins are ferromagnetically ordered
in the planes while the unit cell is doubled in thec-direction by antiferromagnetic spin
ordering, so the resulting unit cell contains four formula units. The primary subject of the
investigation [13] was the quadrupolar distortion in planes which is directly connected with
the peculiar orbital ordering. The total energy as a function of the shifts of the fluorine
ions in the CuF2 plane was calculated with the standard LSDA and LDA+ U functionals
(figure 13). The striking difference between the two calculations is that the LSDA solution
has no instability against quadrupolar distortion while the LDA+U curve has a minimum at
Q = 2.5% of a compared with the experimental value of 4.4%. This means that exchange-
only and lattice–electron (‘electron–phonon’) interactions in the LSDA are not enough to
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drive the observed orbital polarization and collective Jahn–Teller distortion. In order to
be able to reproduce them, the orbital-dependent interaction terms must be included in the
functional as is the case in the LDA+ U method. It is possible to directly observe the
orbital ordering in KCuF3 by plotting the three-dimensional spin density obtained in the
LDA + U calculation (figure 14). As there is only one hole in the d shell of the Cu2+ ion,
this spin-density distribution gives the charge density of the holes. The picture agrees quite
well with the orbital ordering of the alternatingx2 − z2 and y2 − z2 Cu 3d orbitals. We
notice that the charge distribution changes only very little under the influence of the lattice
distortion, emphasizing that this ordering is in the first instance of an electronic origin.

As expected, the electronic properties come out essentially correct. The ‘Koopman
theorem’ gap in the LDA+ U band structure should give an order-of-magnitude estimate
for the single-particle gap and was found to be similar to that in the cuprates (2 eV) [44].
Furthermore, the magnetic ordering is reproduced and to test the method more severely the
magnetic exchange interactions were calculated as well. Using the Green function method to
calculate the effective exchange interaction parameters as second derivatives of the ground-
state energy with respect to the magnetic moment rotation angle [46] in combination with
equations (4)–(9), one obtains

Jij =
∑
{m}

I i
mm′χ

ij

mm′m′′m′′′I
j

m′′m′′′ (47)

where the spin-dependent potentialsI are expressed in terms of the potentials of equation (9),

I i
mm′ = V

i↑
mm′ − V

i↓
mm′ (48)

while the effective inter-sublattice susceptibilities are defined in terms of the LDA+ U

eigenfunctionsψ as

χ
ij

mm′m′′m′′′ =
∑
knn′

nnk↑ − nn′k↓
εnk↑ − εn′k↓

ψilm∗
nk↑ ψj lm′′

nk↑ ψilm′
n′k↓ψj lm′′′∗

n′k↓ . (49)

It was found that the antiferromagnetic exchange in the CuF ‘chains’ amounts to
Jc = −20.7 meV while the ferromagnetic exchange in thea–b planes is much smaller
(Jab = 0.52 meV), emphasizing the quasi-1D character of thisS = 1/2 spin system. This
compares quite well with the neutron scattering measurements, showing the Luttinger-liquid
nature of the spin system, with the 1D exchange estimated to beJc = −17.5, −17.0 meV
andJab = 0.17, 0.27 meV [47]

6.2. Polarons in La2−xSrxCuO4 and La2−xSrxNiO4

The LDA+ U method was designed to treat Mott–Hubbard insulators, but a real challenge
is the problem of the theoretical description of the doped Mott insulator, the latter being
the model for high-Tc superconductors based on copper oxides. One important question in
this field is that of the strength of the polaronic effects in these compounds.

In order to answer this question Sr-doped (tetragonal) La2CuO4 was investigated [44].
The undoped system is quite well described by the LDA+ U method and a 2× 2 supercell
(La8−xSrxCu4O16) was used to investigate the (self-) localization effects. At first, the
problem of the hole in the undistorted lattice was considered to address the magnetic
relaxation effects. Subsequently the interaction of the hole with both in-plane and out-
of-plane lattice distortions was investigated. These calculations were then repeated for
La2−xSrxNiO4.

Except for the irrelevant La 4f states, the LDA+ U electronic structure of undoped
La2CuO4 looks very similar to that of CaCuO2 (figure 6). According to these calculations,
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La2CuO4 is a charge-transfer insulator [48]. The lowest unoccupied states are Cu 3dx2−y2,
while the lowest occupied states are more O 2p-like. To see how well structural properties
are handled, the frequency of the breathing-mode phonon were calculated. Using the frozen-
phonon technique the calculated value was found to beωBR = 660 cm−1, quite close to the
experimental value of 710 cm−1 [49].

Figure 15. A contour map of the hole density distribution in the CuO2 plane of La2CuO4 in the
supercell LDA+ U calculation. The central copper atom (Cu1) is in the lower left-hand corner
of the figure. The full lines correspond to the positive values and dashed lines to the negative
values of the hole density.

It was found that the hole induces a parallel alignment of the moment of Cu1 (the central
Cu atom in supercell) with those of Cu2 (nearest neighbours). This local ferromagnetic ‘spin
bag’ in the antiferromagnetic background caused by the presence of a hole can be viewed
as a mean-field analogue of the Zhang–Rice singlet [50]: the hole is mostly localized on
the four oxygens surrounding the central Cu1, having its spin antiparallel to that of Cu1

(figure 15 and table 2). The hole-induced states produce the peak in the former gap region
which is close (0.15 eV) to the top of the valence band.

In the study of lattice-polaronic effects two possible types of lattice deformation were
investigated: (1) the four neighbouring in-plane O atoms were moved along the Cu–O bond
axis toward Cu1, where the hole is localized (the ‘breathing polaron’), (2) the motion of
the two apical O atoms (Oap) along the Cu1–Oap bond axis was considered (the ‘anti-JT
polaron’). As a function of the breathing distortion it was found thatthe energy is at
minimum for a finite distortion, corresponding to a 2% contraction of the Cu1–O1 bond. The
total energy is lowered by an amount of 39 meV, and the energy is lower than that of
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Table 2. The dependence of the total energy (meV) (δE) and the magnetic moments (inµB )
on the displacement (x) of either in-plane (‘breathing’, BR) or apical oxygens (‘Jahn–Teller’,
JT) towards the central transition metal ion (TM1) in the supercell (TM2 is the nearest and TM3
the next-nearest TM1 neighbour), in the case of ‘doped’ La2CuO4 (LCO) and La2NiO4 (LNO).
(For JT the total energyδE is measured relative to the energy of BR.)

x δE µT M1 µT M2 µT M3

LCO 0% 0 −0.55 −0.59 0.72
2% (BR) −39 −0.43 −0.63 0.73

11% (JT) 54 0.96 −0.64 0.73
LNO 0% 0 0.42 −1.58 1.67

4% (BR) −210 0.54 −1.58 1.67

the undistorted lattice up to a distortion of 4%. The calculated polaron binding energy is
small compared to the estimates for its kinetic energy [51] and small-polaron effects are not
expected.

It was found that the contraction of the Cu1–Oap bond increases the LDA+ U total
energy if the distortion is small. However, it was possible to find a local minimum in the
total energy by allowing the additional hole to have 3z2 − 1 symmetry with respect to Cu1,
corresponding to a reduction of the Cu1–Oap bond length of 0.26̊A (11%), in remarkable
agreement with the data of Egamiet al [52]. The total energy of the anti-JT polaron is only
54 meV higher than that of the fully relaxed breathing-mode polaron.

The above calculations were repeated for Sr-doped La2NiO4. The undoped La2NiO4

was found to be a high-spin (1.69µB) antiferromagnetic charge-transfer insulator with a p–d
gap of 3.5 eV. The ground state is locally ax2 − y2, 3z2 − 1 (S = 1) state, where the holes
are rather strongly localized on Ni (10% O 2p admixture). Adding a hole to the supercell
leads to an inhomogeneous state, which is qualitatively similar to the one in the cuprate. The
additional hole has a large weight on the four in-plane O1 atoms (nearest neighbours to Ni1),
although the 3d admixture has increased compared to the case of the cuprate. This state
hasx2 − y2 symmetry with respect to Ni1 and the spin of the additional hole is antiparallel
to that of Ni1, i.e. the hole is low spin. Thex2 − y2 spins do not compensate exactly on
Ni1 (mx = nx2−y2↑ − nx2−y2↓ = −0.30µB) and together with the larger polarization of the
3z2 − 1 hole (0.70µB), give a net moment of 0.42µB (table 2). The additional hole is
nearly entirely localized on Ni1 and O1. Hence,the magnetic confinement effects are much
stronger in the nickelate than in the cuprate. This is not surprising, considering the larger
gap and moment in the former. Then the breathing-type lattice relaxation was studied, and
the stabilization energy of the breathing polaron was found to be 210 meV, five times larger
than in the cuprate.The total energy is at minimum if the Ni1–O1 bond is contracted by
4% (table 2). This large polaron binding energy could help to explain why doped nickelates
are non-metallic in contrast to cuprates.

7. The metal–insulator transition

It is well known that mean-field approximation is too crude to be able to describe the
metal–insulator transition in strongly correlated systems. However, there are a few cases
where LDA+ U calculations can be relevant to this problem. These are the cases of FeSi
[53] and LaCoO3 [54], both of them being non-magnetic insulators at low temperature and
becoming metals with significant local magnetic moments at higher temperatures.
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7.1. FeSi

FeSi displays an unusual crossover from a singlet semiconducting ground state with a narrow
band gap to a metal with an enhanced spin susceptibility and a Curie–Weiss temperature
dependence in the vicinity of room temperature [55]. Various theoretical models have been
put forward to explain this behaviour starting with the very narrow-band description of
Jaccarinoet al [56]. Takahashi and Moriya (see [57]) proposed a nearly ferromagnetic
semiconductor model which predicted thermally induced spin fluctuations which were
subsequently confirmed experimentally [58]. Recently, models based on treating FeSi as a
transition metal analogue of the Kondo insulators found in heavy-fermion rare-earth systems
have been much discussed [59, 60].

The LDA electronic structure calculation by Mattheiss and Hamann [61] correctly
accounts for the narrow-gap semiconducting ground state but more is required to explain
the anomalous behaviour.

Figure 16. The density of states (DOS) for FeSi from LDA+ U calculations. The chemical
potential is the zero energy. (a) The non-magnetic state withU = 0; (b) majority- and minority-
spin bands in a ferromagnetic state with a moment of 1µB [53].

If one setsU = 0 then the potential correction (9) vanishes and the LDA+ U method
becomes equivalent to the standard LDA. In figure 16(a), the density of states (DOS)
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obtained in the calculation withU = 0 is shown. It is quite close to the results of the
previous LDA calculations [61]. The Stoner parameter,I , is not strong enough to produce
a magnetic state and the only stable solution is non-magnetic. As one increases the value of
U above the critical value,Uc = 3.2 eV, a stable magnetic solution appears with a magnetic
moment on each Fe site,µ = 1µB (figure 16(b)). The non-magnetic solution is still present
and has a total energy of≈0.3 eV/Fe lower than the magnetic one. With further increase
of U the total energy of the magnetic solution decreases relative to the non-magnetic one
and forU > 4.6 eV it is lower in energy and so becomes the ground state.

A so-called ‘fixed-spin-moment’ calculation was also performed where the total energy
Eg(µ) is calculated as a function of the magnetic moment,µ, on each Fe site (figure 17).
One can see that forU < Uc there is only one local minimum in the curve corresponding to
µ = 0. Nearµ ≈ 1 there is only a bend in the curve but no minimum. ForU = 3.4 eV a
second local minimum appears in the curve but it lies higher in energy than the zero-moment
minimum. However, forU = 5.4 eV, the minimum corresponding to the magnetic solution
is clearly lower than that for the non-magnetic one.

The existence of the second local minimum inEg(µ) leads to a first-order transition in an
external magnetic field. Although the magnetic moment (µ = 1µB/Fe) of the ferromagnetic
state is insensitive to the choice ofU , the critical field,Bc, that determines the transition
is very sensitive toU . For example for the choiceU = 3.4 eV corresponding to figure 17,
Bc is very large (∼103 T), but for U > 4.6 eV, Bc = 0 and the magnetic solution is
the most stable. It is clearly not possible to make an accuratea priori estimate ofBc.
The authors [53] resorted to simpler model calculations guided by thea priori calculations
which included the effect of finite temperature and then adjusted the model parameters to
obtain agreement with the measured spin susceptibilityχ(T ) and specific heatCp(T ). They
obtained the critical temperature valueTc = 280 K and critical fieldBc = 170 T.

7.2. LaCoO3

Among the systems showing a semiconductor-to-metal transition, LaCoO3 is especially
interesting due to the fact that it also displays very unusual magnetic behaviour, often
associated with low-spin–high-spin (LS–HS) transition [62]. Although a large number of
investigations have been carried out since the early 1960s the character of the transition and
the nature of the temperature dependence of the spin state is still unclear. For example,
the temperature dependence of the magnetic susceptibility shows a strong maximum at
around 90 K followed by a Curie–Weiss-like decrease at higher temperatures [63] which was
interpreted by the authors as a LS–HS transition. The semiconductor–metal-like transition
occurs in the range 400–600 K, well above this transition.

The electronic structure of LaCoO3 was studied [54] in the LDA+ U approach. In
contrast to the results from the standard LDA there were found several stable solutions
corresponding to different local minima of the LDA+ U functional. The non-magnetic
insulating low-spin state (the d-shell configuration of the Co ion is t6

2ge0
g) is a ground state,

in agreement with the experiment. The unexpected result was that while the high-spin
state (configuration t4

2ge2
g) lies rather high in energy, two other orbitally polarized magnetic

solutions (configuration t5
2ge1

g) corresponding to intermediate-spin (IS) states (one of them
is a gapless semiconductor and the other is a metal) have total-energy values only slightly
higher than that of the LS ground state (for crystal structure parameters corresponding to the
temperature 4 K). The total-energy difference between the LS and IS states is very sensitive
to the lattice constant. With increasing lattice constant the energy of the IS solution becomes
smaller than the total energy of the LS solution thus giving the IS solution as a ground



796 V I Anisimov et al

Figure 17. The total energy of FeSi as a function of the spin momentM (µB /Fe) with various
values ofU [53].

state. This crossover occurs at the lattice constant corresponding to'150 K. The authors
of [54] suggested the following interpretation of the transition in LaCoO3. According to
their scheme, with increasing temperature, at first a transition from a LS (non-magnetic)
insulating ground state to a state with an IS (configuration t5

2ge1
g) occurs. Due to the strong
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Jahn–Teller nature of this configuration, this state may develop an orbital ordering. The
orbitally ordered state turns out to be non-metallic (actually a nearly zero-gap semiconductor)
in the LDA+U calculations. With the further increase of the temperature the orbital ordering
may be gradually destroyed which can explain the transition to a metallic state observed in
LaCoO3 at 400–600 K.

8. A charge-ordered insulator: Fe3O4

Magnetite Fe3O4 is a mixed-valence 3d transition metal compound. It crystallizes in
an inverted cubic spinel structure in which the tetrahedral A sites contain one third of
the Fe ions as Fe3+, while the octahedral B sites contain the remaining Fe ions, with
equal numbers of Fe3+ and Fe3+ ions in B1 and B2 sites, respectively. Below 860 K,
magnetite is ferrimagnetic with A-site magnetic moments aligned antiparallel to the B-site
moments. AtTV = 122 K Fe3O4 undergoes a first-order phase transition, the so-called
Verwey transition (see [64]), in which dc conductivity abruptly increases by two orders of
magnitude on heating throughTV . Verwey interpreted the transition as an order–disorder
transformation of Fe ions on the B sites. Indeed, studies by electron and neutron diffraction,
and nuclear magnetic resonance [65] show that belowTV the B1 and B2 sites are structurally
distinguishable in a distorted crystal structure. Photoemission measurements clearly show a
gap of'0.14 eV in the spectra [66]. However, a band-structure calculation using local spin-
density approximation (LSDA) [67] gave only a metallic solution without charge ordering
with a partially filled band (containing one electron per two B sites) originated from t2g

spin-down 3d orbitals of Fe ions in octahedral B sites.
The problem of the charge ordering cannot be treated using the standard LSDA. The

reason for this is a spurious self-interaction which is present in the LSDA. In contrast
to the Hartree–Fock approximation where self-interaction is explicitly excluded for every
orbital, in the LSDA it is cancelled only in the total-energy integrals but not in one-electron
potentials which are orbital independent. The spurious self-interaction present in the LSDA
leads to an increase in the Coulomb interaction when the distribution of the electron charge
deviates from the uniform one. This effect can be illustrated in the following way. If one
neglects inter-site Coulomb interaction then the electron under consideration feels the same
potential on all sites independently of the occupancy of the particular site, as it does not
interact with itself. However, as the LSDA potential is a functional of the electron density
only, then, increasing the electron density on one site and decreasing it on another one,
with a development of charge ordering, will lead to an increase of the potential on the first
site and a decrease on the second one. As a result, in the self-consistency loops, the charge
distribution will return to the uniform density.

In order to cure this deficiency, it is necessary to remove spurious self-interaction.
Formally the LDA+U method does it but this method was constructed for Mott insulators,
and for systems with a charge ordering it must be modified by taking into account inter-site
Coulomb interaction. In order to do this one must map the dependence of the Coulomb
interaction energy onto the number of t2g electrons in the LSDA of a model with on-site
and inter-site terms, and then explicitly exclude the self-interaction on-site term [68].

If one definesni as a sum of the occupancies of t2g orbitals (nxy + nxz + nyz) for the
minority-spin direction on B sitei then the model which imitates the LSDA is

E[ni ] =
∑

i

{
1

2
Uni(ni − 1) + V

∑
j

ninj

}
. (50)

(The indexj numbers the neighbours of the sitei.) In order to compute the value of
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the parametersU and V one must perform a constrained calculation for the two types of
charge ordering where occupanciesni on different sites are varied with the total number of
t2g electrons conserved. As a first type of charge ordering, the order suggested by Verwey
(see [64]) was chosen. It can be described as a lattice built from the neutral tetrahedra
where every tetrahedron contains two atoms from the B1 sublattice and two atoms from the
B2 sublattice. The second type of charge ordering corresponds to charged tetrahedra where
one of them contains only B1-type and another only B2-type entities.

Having determined the parametersU andV one can define now a new functional without
a self-interaction by subtracting a12Uni(ni − 1) term from the LSDA functional. The real
on-site Coulomb interaction energy is small due to the small probability of meeting two t2g

electrons on the same site but it is nevertheless non-zero and it was taken into account by
adding the corresponding term in the Hartree–Fock approximation:

E = ELSDA − 1

2

∑
i

{
Uni(ni − 1) −

∑
m,m′ 6=m

Uni,mni,m′

}
(51)

(herem, m′ denotes different t2g orbitals for spin-down electrons of Fe ions on octahedral
B sites). The corresponding orbital-dependent potentialVi,m is given by the variation of the
new functional (6) with respect to the occupancy of the particular t2g orbital ni,m:

Vi,m = V LSDA
i + U

(
1

2
− ni,m

)
.

Constrained calculations with two types of charge ordering gave the following parameters:
U = 4.51 eV andV = 0.18 eV.

Electronic structure calculations for the functional given in equation (51) were performed
for the Verwey type of charge ordering. In contrast to the LSDA, where the stable solution
is a metal with a uniform distribution of the t2g spin-down electrons on the octahedral sites,
the self-interaction-corrected functional (51) gave a charge-ordered insulator with an energy
gap of 0.34 eV (the experimental value is 0.14 eV [66]).

According to the ionic model, charge ordering implies Fe3+ and Fe2+ ions on octahedral-
site sublattices B1 and B2 with configurations d5 (t32g↑e2

g↑) and d6 (t32g↑e2
g↑t12g↓) respectively.

In the actual calculations due to the strong covalency effects the numbers of d electrons
in the atomic spheres were 5.91 and 6.23 with the charge difference 0.32 instead of the
pure ionic value of 1.0 (however, the difference in the occupancy of the t2g↓ orbital for two
sublattices is larger: 0.70).

In figure 18, the densities of states (DOSs) for Fe3O4 obtained in standard LSDA
calculations are presented and in figure 19 the DOS calculated with the use of the functional
in equation (51) is shown. For the LSDA one can see an oxygen band between−8 eV and
−4 eV and above it (for both spin-up and spin-down DOSs) four bands of Fe 3d origin.
For spin-up states the sequence is t2g and eg bands of iron in octahedral B sites and above
them eg and t2g bands of iron in tetrahedral A sites. For spin-down states the order of
the octahedral and tetrahedral sites bands is reversed so the first two d bands are eg and
t2g bands of iron in tetrahedral sites (A) and above them are t2g and eg bands of iron in
octahedral sites (B) with the Fermi energy lying in the t2g band.

In the charge-ordered state the partially filled t2g spin-down band of the octahedral
(B) ions is split into three parts (figure 19): just below the Fermi energy is the subband
corresponding to the occupied t2g orbital of the B2(Fe2+) sublattice, then immediately above
the Fermi energy is the t2g band of the B1(Fe3+) sublattice and above it the band formed
by the empty orbitals of B2(Fe2+) ions and empty eg bands of octahedral (B1, B2) ions.



Strongly correlated systems: theLDA + U method 799

Figure 18. The density of states for Fe3O4 in the LSDA calculation. A: tetrahedrally coordinated
Fe ions; B: octahedral Fe ions [68].

This result shows that, after subtracting the spurious self-interaction present in the
LSDA, it is indeed possible to obtain an insulating charge-ordered solution for Fe3O4.
However, what about the metal–insulator transition—can this method describe it? Knowing
the value of the inter-site Coulomb interaction parameterV it is possible to estimate the
change in the potential acting on the t2g electrons in going from Verwey-type charge order
to the completely disordered state. The difference between the electrostatic potentials for
the two sublattices in Verwey-type charge order is equal toδV = 4V δnt2g

. The calculation
of [68] gaveV = 0.18 eV andδnt2g

= 0.70 which gives the resultδV = 0.50 eV and that is
definitely larger than the calculated energy gap value, 0.34 eV. That means that completely
destroying the charge order would close the energy gap and lead to the metallic state.

9. Beyond the mean-field approximation: spectral properties and quasiparticle bands

In spite of its many successes the LDA+ U method has obvious limitations as a one-
electron method with a single Slater determinant as a trial function. It is well known
that, for example, spectra of the transition metal compounds could only be described in
the configuration interaction (CI) approximation with a trial function which is a linear
combination of the Slater determinants [14, 15].
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Figure 19. The density of states for Fe3O4 in the LDA + U calculation. A: tetrahedrally
coordinated Fe ions; B: octahedral Fe ions (B1 corresponds to Fe3+ and B2 to Fe2+ ions) [68].

The LDA + U method can give all of the parameters needed for such calculations
because the diagonal matrix elements for every single Slater determinant can be calculated
in the framework of the LDA+ U theory and the off-diagonal matrix elements can be
expressed through the one-electron parameters. The following [69] is the realization of this
idea for the case of NiO, but the procedure is general and could be applied to any material.

The ground state of NiO (withN particles) in the Anderson impurity model is

9N
GS = α0|d8〉 + β0|d9L〉 (52)

whereL is a hole in the ligand states (the oxygen continuum) and the high-energy|d10L2〉
configuration is neglected. The final states of the removal spectrum (withN − 1 particles)
are (neglecting the|d9L2〉 configuration)

9N−1
m = αm|d7〉 + βm|d8L〉. (53)

The one-electron-removal Green function is

G(ω) =
∑
m

Am

ω − EN−1
m + EN

GS + iη
. (54)

The pole strengthsAm are the squares of the overlaps between the eigenstates9N−1
m and

the state obtained by suddenly removing an electron from the ground state9N−1
GS . The form
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of the function9N−1
GS depends on from which orbital an electron will be removed—from

Ni 3d or from O 2p. In the first case

9N−1
GS,d = α0|d7〉 + β0|d8L〉. (55)

In the second case

9N−1
GS,p = α0|d8L〉 + β0|d9L2〉. (56)

The corresponding pole strengths are

Ad
m = |〈9N−1

GS,d |9N−1
m 〉|2 = |α0αm + β0βm|2 (57)

Ap
m = |〈9N−1

GS,p|9N−1
m 〉|2 = |α0βm|2. (58)

The corresponding one-electron Green’s functions for removal of d and p electrons are

Gd(ω) = α2
0Gdd + α0β0(Gdp + Gpd) + β2

0Gpp (59)

Gp(ω) = α2
0Gpp (60)

where

Gαβ =
∑
m

αmβ∗
m

ω − EN−1
m + EN

GS + iη
. (61)

Let us consider first the d-removal spectrum. The final state with three d holes|d7〉 can have
any of three symmetries:2E (the e1g↑e2

g↓ hole configuration),4T1 (t12g↓e2
g↓) and2T1 (t12g↑e2

g↓).
They can mix with the configurations|d8L〉 of the corresponding symmetries. The non-zero
off-diagonal matrix elements can be expressed through the one-electron hopping parameters
(properly given in LDA or LDA+ U calculations) and the corresponding coefficients are
tabulated in [70, 14].

How do we calculate the diagonal matrix elements, for example〈e3|e3〉 and
〈e2(3A2)Le|e2(3A2)Le〉? If the energy of the ground state of the|d8〉 configuration
(|e2(3A2)〉) is zero then the former is the removal energy of the eg↑ electron and the latter
is the removal energy of the ligand (oxygen 2p) electron. In the LDA+ U formalism the
one-electron energies of the occupied states have the meaning of the removal energies [12]
so one can use the results of the self-consistent LDA+ U calculation for the calculation of
the diagonal matrix elements of the many-electron Hamiltonian. If the particular|d8L〉 state
has a d8 configuration not in the ground state3A2 (for example|e2(1E)Le〉) then the diagonal
matrix element will be the energy ofLe minus the energy difference (E(1E) − E(3A2)).

In practice, the calculations were performed in the following way. At first the many-
electron Hamiltonian matrix, whose eigenfunctions are9N−1

m , equation (53), was constructed
from the parts of the one-electron Hamiltonian, and then the Green functions (61) were
calculated. Let us illustrate this for2E symmetry.

In the one-electron Hamiltonian matrix there is one block describing continuum states
(O 2p), two rows (columns) for d orbitals of eg symmetry and three rows (columns) for
t2g. In the many-electron Hamiltonian matrix for2E symmetry there are three blocks for
continuum states (describing three types of ligand hole in the final states|d8L〉) with the
shifts of the diagonal elements of these blocks if the corresponding d8 configuration is not
in the ground state3A2. There is also one row (column) for|d7〉 (e3) configuration with the
diagonal matrix element equal to the energy of the eg↑ orbital in LDA +U calculations and
with the off-diagonal matrix elements according to [70, 14].
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To perform impurity calculations for NiO with only one d shell in an oxygen continuum,
we use the following procedure. We first push up the d orbitals by adding a potential acting
only on them:

H0 = HLDA+U +
∑

i

|di〉1〈di |. (62)

1 is a constant andi labels the site. The valence band is then mainly formed by the Ni 4s,
4p and O 2s, 2p orbitals with a small but non-zero hybridization with the Ni d decaying as
∼1/1. Using the HamiltonianH0 we calculate the Green functionG0

dd which has a small
imaginary part around the valence band due to the small hybridization. The impurity Green
function Gdd is then defined to be the one corresponding to the following Hamiltonian:

H = H0 − |d0〉1〈d0| (63)

i.e. at the origin where the impurity is located, the d orbital is at its original position but
at any other site it is high up in energy. Consequently, this Green function contains the
hybridization with the oxygen continuum throughH0. The impurity Green function can be
calculated from the Dyson equation:

G = G0 + G0 1V G (64)

where for the d orbital,V = |d0〉1〈d0| giving well known formulae [71]

Gdd = G0
dd

1 − 1G0
dd

(65)

Gdp = G0
dp

1 − 1G0
dd

(66)

Gpp = G0
pd1G0

dp

1 − 1G0
dd

+ G0
pp. (67)

1 is the upward energy shift of the d orbitals for calculating Green’s functionsG0:

G0
ij (ω) =

∫
dk

∑
n

cn
i (k)cn∗

j (k)

ω − En(k) + iη
. (68)

The integration is over the Brillouin zone andcn
i (k), En(k) are eigenvectors and eigenvalues

of the band-structure calculation with the new Hamiltonian matrix.
Equations (65)–(68) and (59) were used to calculate the one-electron Green’s function

for the removal of a d electron,Gd(ω). (Theα0 andβ0 were extracted from the ground-state
self-consistent LDA+ U calculation:α2

0 ≈ 0.9 andβ2
0 ≈ 0.1.)

The total d-removal theoretical spectrum was calculated from the imaginary part of the
Gd(ω) broadened by 0.5 eV (the summation over the three symmetries of the final state
(2E, 2T and 4T) with appropriate weights was performed). In figure 20 this spectrum is
plotted together with experimental XPS for NiO. One can see that two major features of the
experimental spectra—the main line at the top of the valence band and a satellite at≈8 eV
lower in energy with smaller intensity—are well reproduced not only in energy separation
but also in intensity ratio.

By using expression (60) one can calculate the oxygen p-removal spectra. In figure 21
they are plotted together with the experimental O Kα x-ray emission spectrum (XES) of
NiO. The impurity approximation, which was used in our calculations, is a d-ion-centred
approach and not so well suited for the oxygen states, but it reproduced two major features
of the experimental spectrum: the main peak of the oxygen bands and the high-energy
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Figure 20. The calculated (Green function LDA+ U ) d-emission spectrum (line) and
experimental XPS for NiO (dots) [69].

Figure 21. The calculated (Green function LDA+ U ) p-emission spectrum for NiO (line) and
experimental O Kα x-ray emission spectrum for NiO (dots) [69].

shoulder corresponding to the admixture of the oxygen states to the main line of the d-
removal spectrum.

While XPS gives the distribution of the d states and O Kα XES that of the p states,
the photoemission spectrum taken at a photon energy of 40.8 eV, shown in figure 22,



804 V I Anisimov et al

Figure 22. The calculated (Green function LDA+ U ) photoemission spectrum with equal
weights of Ni 3d and O 2p states (dashed line) compared to the experimental He II UPS (solid
line) [69].

corresponds to nearly equal cross-sections of Ni 3d and O 2p states. Good agreement with
the theoretical spectrum, obtained by adding the Ni 3d- and the O 2p-removal spectra,
proves that our calculation gives not only the main line and satellites of d origin but also
the relative position of the oxygen bands.

Figure 23. The experimental (dots) and the calculated (solid line) BIS (bremsstrahlung
isochromat spectrum) for NiO [12].

The final state of the addition spectrum for NiO has only one d hole and the corres-
ponding wave function could be chosen as a single Slater determinant. Hence the
straightforward LDA+U calculation of the density of states for unoccupied bands must be
compared with ‘bremsstrahlung isochromat spectra’ (BIS). Such a comparison is presented
in figure 23 and it shows quite good agreement.

One of the most promising ways of going beyond mean-field LDA+ U approximation
is a ‘dynamical mean-field’ approach, [72] which takes into account full local quantum
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fluctuations on d (f ) sites in the impurity-like model. A non-trivial frequency dependence
of the self-energy could describe the Mott metal–insulator transition in transition metal
oxides, such as V2O3, for a different temperature and interaction strengthU/t . In this case
only spatial fluctuations between different d (f ) sites are frozen and it could be a perfect
approximation for heavy-fermion systems. If the Hubbard parameterU is smaller than
the band width, it is possible to use one of the ‘standard conserving approximations’—
fluctuation exchange approximation (FLEX) [73] and investigate the generalq- and ω-
dependence of a self-energy. We briefly illustrate this approach to the problem of
quasiparticle band structure for bi-layer superconducting cuprates, such as YBa2Cu3O7.

In this case the total Green function matrix in the orbital and spin space determined
through the self-consistent solution of FLEX equations is

G−1(k, ωn) = G−1
0 (k, ωn) − 6(k, ωn)

6(k, ωn) = T

N

∑
q,ωm

V (q, ωm)G(k − q, ωn − ωm)
(69)

where N is a total number of momentumk-points, ωn = (2n + 1)πT are the fermion
Matsubara frequencies withn an integer andT the system temperature. The spin-fluctuation
contribution to the effective interaction matrixV in the paramagnetic state

V sf (q, ωm) = (3/2)Uχ(q, ωm)[(1 − Uχ(q, ωm))−1 − 1]U

is defined through the full particle–hole susceptibilities:

χ
ph

mm′m′′m′′′(q, ωm) = − T

N

∑
q,ωm

Gmm′′(k, ωn)Gm′m′′′(k + q, ωn + ωm). (70)

Here the U -matrix corresponds to the antisymmetrized Coulomb interaction from
equation (10), namelyUmm′m′′m′′′ = 〈mm′′|Vee|m′m′′′〉 − 〈mm′′|Vee|m′′′m′〉.

For YBa2Cu3O7 we include in the consideration only two antibonding Cu dx2−y2–O px ,
py LDA bands which only cross the Fermi level for this bi-layer CuO2 system [74]. The
band width is approximately 4 eV, and the effective Hubbard parameter is 3 eV. The latter
number takes into account the 65%-weight Cu dx2−y2 orbital in these antibonding bands and
the LDA screened electron–electron interaction parameter for the Cu d orbital in cuprate
of about 7–8 eV. We solve the non-linear integral FLEX equations using the fast Fourier
transform method on the discrete mesh of 64×64 momenta in the two-dimensional Brillouin
zone and 700–800 Matsubara frequencies with the cut-off of 20–30 eV in the energy (which
corresponds to the temperature range of 80–200 K). Analytical continuation on the real axes
was done by Pad́e approximation.

The resulting quasiparticle (QP) bands which correspond to the maxima in the spectral
functions (A(k, ω) = −(1/π)Im G(k, ω)) are presented on figure 24, in comparison with
the bare LDA bands. Due to the large spin fluctuation for theq = (π, π) point in the two-
dimensional Brillouin zone (BZ), there is a large renormalization of the bi-layer splitting
near the X point. While the Fermi-level-crossing points are nearly the same for LDA
bands and QP bands by the Luttinger theorem, the bonding (b) and antibonding (a) QP
bands are ‘pinned’ to the Fermi level in a large portion of the BZ, forming so-called
‘extended van Hove singularities’. The important property of such QP band structures of
HTC compounds is the ‘vanishing’ of the bi-layer splitting in agreement with the recent
angle-resolved photoemission study [75]



806 V I Anisimov et al

Figure 24. LDA and QP bands near the X point for bi-layer cuprates. Arrows indicate the
temperature scale (T = 150 K), 0/2 ≡ (π/2, 0), M/2 ≡ (π, π/2).

10. Conclusion

The LDA + U method was proved to be a very efficient and reliable tool in calculating
the electronic structure of systems where the Coulomb interaction is strong enough to
cause localization of the electrons. It works not only for nearly core-like 4f orbitals
of rare-earth ions, where the separation of the electronic states in the subspaces of the
infinitely slow localized orbitals and infinitely fast itinerant ones is valid, but also for such
systems as transition metal oxides, where 3d orbitals hybridize quite strongly with oxygen
2p orbitals. In spite of the fact that the LDA+ U method is a mean-field approximation
which is in general insufficient for the description of the metal–insulator transition and
strongly correlated metals, in some cases, such as the metal–insulator transitions in FeSi
and LaCoO3, LDA + U calculations gave valuable information by giving insight into the
nature of these transitions. The main advantage of the LDA+ U method over model
approaches is its ‘first-principles’ nature with a complete absence of adjustable parameters.
Another asset is its fully preserved ability from LDA-based methods to address the intricate
interplay of the electronic and lattice degrees of freedom by computing the total energy
as a function of lattice distortions. When the localized nature of the electronic states with
Coulomb interaction between them is properly taken into account, this ability allows one
to describe such effects as polaron formation and orbital polarization. As the spin and
charge densities of the electrons are calculated self-consistently in the LDA+ U method,
the resulting diagonal and off-diagonal matrix elements of one-electron Hamiltonians could
be used in more complicated calculations where many-electron effects are treated beyond
the mean-field approximation.
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